

Leveraging DegenGeom for Multi-Fidelity Analysis

Erik D. Olson, Ph.D.

Aeronautics Systems Analysis Branch
NASA Langley Research Center

OpenVSP Workshop 2016
NASA Ames Research Center, August 23-25, 2016

- Introduction
- Motivation and Goal
- Discrete Data Mapping
- Implementation
- Subsonic Transport Example
- Concluding Remarks

Introduction

- Early conceptual design studies traditionally performed using lower-order analysis methods on simplified geometrical representations.
- Transition to higher-order analysis using a more representative geometry as the design becomes more refined.
- This transition typically requires complete recreation of the geometry.
- Discontinuities in geometrical representation are even more of a problem in newer multi-fidelity approaches.

OpenVSP Degenerate Geometry

Motivation

- Nodes of degenerate models are consistent with the geometric abstraction of the analysis method, therefore they could also serve as repositories for the resulting analysis data.
- These results can be made available to subsequent analyses in other disciplines, always maintaining the link to the master geometry.
- This internal data storage capability can greatly facilitate the creation of multi-disciplinary, multifidelity analysis, design and optimization processes.

Goal

- Extend the functionality of OpenVSP's degenerate geometric models to also store analysis results associated with the geometry.
- Implement a method to simultaneously map analysis results onto the nodes of all the other degenerate models.
- Make stored data available to subsequent higher- and lower-order analyses in whatever level of abstraction they require, regardless of the degenerate model on which the original analysis was based.

- Introduction
- Motivation and Goal
- Discrete Data Mapping
- Implementation
- Subsonic Transport Example
- Concluding Remarks

Discrete Data Mapping

Analysis results are mapped onto discrete nodes of degenerate models in three ways:

- 1. Results mapped onto nodes of the same order as the analysis.
- 2. Results mapped onto lower-order degenerate models (aggregation).
- 3. Results mapped onto higher-order degenerate models (*disaggregation*).

Aggregation and Disaggregation

Degenerate Type

- Introduction
- Motivation and Goal
- Discrete Data Mapping
- Implementation
- Subsonic Transport Example
- Concluding Remarks

Implementation

- Mapping process implemented as a Java[™] class name DegenGeom.
- DegenGeom object instantiated by parsing a Degenerate Geometry file exported by OpenVSP.
- Application program interface (API) makes data access and mapping methods available to wrappers for individual analysis methods.
- Aggregation and disaggregation operations performed automatically when analysis results are processed.
- DegenGeom objects are serializable and can be passed as output, carrying all analysis results for use by subsequent analysis methods.
- DegenGeom object is typically the only output needed.

Wrapper and API

Analysis method based on the degenerate Stick model

- Introduction
- Motivation and Goal
- Discrete Data Mapping
- Implementation
- Subsonic Transport Example
- Concluding Remarks

Single-Aisle Transport in OpenVSP

Analysis Process

- FRICTION: profile drag of fuselage
- XFOIL: sectional aerodynamic coefficients of lifting surfaces
- ASWING: aero-structural analysis of full configuration

ModelCenter® Process Model

XFOIL Sectional Press. Distributions

$$M_{\infty} = 0.3$$
, $h = 10,000$ ft, $\alpha = 0$

XFOIL Sectional Polars

$$M_{\infty} = 0.3, h = 10,000 \text{ ft}$$

ASWing Spanwise Lift Distribution

Quasi-steady 2.5-g pull-up at $V_{\rm eas} = 250$ kt, h = 10,000 ft

ASWing Deflections

Quasi-steady 2.5-g pull-up at $V_{\rm eas}=250~{\rm kt},\,h=10,\!000~{\rm ft}$

ASWing Results Mapped Onto Surface

- Introduction
- Motivation and Goal
- Discrete Data Mapping
- Implementation
- Subsonic Transport Example
- Concluding Remarks

Concluding Remarks

- Aggregation and disaggregation processes currently formulated in a mostly ad-hoc manner depending on the specific analysis method.
- It should be possible to further automate these processes, defining universal mapping algorithms that automatically enforce consistency and reversibility.
- Surface model components are maintained as separate, non-intersected surfaces. We could extend these capabilities by also applying them to the intersected, unstructured surface mesh exported by OpenVSP.

Acknowledgements

 This work was conducted as part of the NASA Transformational Tools and Technologies Project, led by Michael Rogers (acting), within the Multi-Disciplinary Design, Analysis and Optimization element, led by Jeffrey K. Viken.

